

α-P-Alkyne Complex Ligands Synthesis, Basicity and Coordination Chemistry

Paula Thiem, Stephan Ludwig, Alexander Villinger and Wolfram W. Seidel*

excess Se

toluene.

R = *i*Pr, Ph

R'= H, **P**R₂

Alkynes substituted by donor atoms in both α -positions offer the opportunity to combine a redox-active complex moiety with a potentially chelating unit. This makes them valuable building blocks for polynuclear compounds with short metal-metal distances and interesting redox behavior. Coordination of those donor alkynes is possible via the donors or

via the triple bond, but the coordination behavior of P-substituted acetylenes is strongly dominated by the phosphorus. Therefore coordination of diphosphinoalkynes to a metal-precursor mostly leads to κ^1 -P-coordination as seen in the example by *Carty* and *Efraty*.^[1] The η^2 -mode as in the compound published by *Templeton* is obtained less often.^[2]

PR₂

Br

Basicity of the Phosphine

N—'

Br

,'' C

The pK_B value of phosphines shows a linear correlation with the ³¹P-⁷⁷Se-coupling constant of corresponding P-selenides, which is therefore used as an indirect measur.^[3] Interestingly, both regioisomers of **2a** differ strongly in their basicity, with **2a** (H_{anti}) even lying in the range of **2b**. In the diphosphanes **3** both phosphane positions also show a slight difference in this regard. It is known that the substituents of a phosphine strongly affect its basicity. Here, the replacement of phenyl substituents by isopropyl groups leads to an increase of the phosphine basicity by several orders of magnitude.

		$^{1}J_{\text{PSe}}$	est. pK_{B}
Monophos	$2a H_{syn}$	701.2	7.3
	$2a H_{syn}$	740.2	12.4
	2 b	738.5	12.2
Diphos	3a	697.1 691.9	6.7 6.0
	3b	769.9 764.7	16.3 14.3

The significant difference in basicity between the isomers of **2a** is confirmed

1) *n*BuLi, -80 °C 2) CI**P**R₂, rt

2 R= *i*Pr (**a**), Ph (**b**)

by methylation of the phosphorus. The inversion of the isomer ratio is based on the more rapid methylation of the H_{syn} isomer and rotation of the alkyne.

Electrophilic substitution after coordination of the unsubstituted acetylene allows functionalization whereas the side-on binding mode is maintained. While investigation of P-substituted acetylene compounds is usually restricted to those of bis(diphenylphosphino)acetylene (dppa), this synthesis enables variation of the substituents on the phosphorus. Due to stabilizing π -interactions between one phenyl group and the scorpionate ligand, the first substitution step is regioselective with diphenylphosphine while synthesis of 2a gives two regioisomers in a ratio of 39 % (H_{svn}) $to 61 \% (H_{anti}).$

Hydrido-tris(trimethylpyrazolyl)borate

In previous works we prepared polynuclear compounds by coordination of diphosphanes **3** to transition metals as Pt(II)^[4] while binding to first row transition metals could not be achieved so far due to a lack of basicity of commonly used **3b**. However, the newly investigated, more basic diphosphine **3a** is able to coordinate Cu(I) and Ni(II) giving complexes stable in solution. The Ni(II) complex can also be obtained with **3b**, though the lower donor strength is reflected in the strongly reduced stability.

[1] A. J. Carty, A. Efraty, *Can. J. Chem.* **1968**, *4*, 1598–1599.
[2] B. C. Ward, J. L. Templeton, *J. Am. Chem. Soc.* **1980**, 1532–1538.

[3] U. Beckmann, D. Süslüyan, P. C. Kunz, *Phosphorus Sulfur Silicon Relat. Elem.* 2011, 186, 2061–2070.
 [4] K. Helmdach, S. Dörk, A. Villinger, W. W. Seidel, *Dalton Trans.* 2017, 46, 11140–11144.

INSTITUT FÜR CHEMIE | Universität Rostock, Albert-Einstein-Straße 3a | 18059 Rostock | Germany