α-P-Alkyne Complex Ligands Synthesis, Basicity and Coordination Chemistry

Paula Thiem, Stephan Ludwig, Alexander Villinger and Wolfram W. Seidel*

Introduction

Alkynes substituted by donor atoms in both α-positions offer the opportunity to combine a redox-active complex moiety with a potentially chelating unit. This makes them valuable building blocks for polynuclear compounds with short metal-metal distances and interesting redox behavior. Coordination of those donor alkynes is possible via the donors or
via the triple bond, but the coordination behavior of P-substituted acetylenes is strongly dominated by the phosphorus. Therefore coordination of diphosphinoalkynes to a metal-precursor mostly leads to $\kappa^{1}-P$-coordination as seen in the example by Carty and Efraty. ${ }^{[1]}$ The η^{2} mode as in the compound published by Templeton is obtained less often.

Basicity of the Phosphine

The pK_{e} value of phosphines shows a linear correlation with the ${ }^{31} \mathrm{P}_{-}{ }^{37} \mathrm{Se}$-coupling constant of corresponding P -selenides which is therefore used as an indirect measur. ${ }^{[3]}$ Interestingly both regioisomers of 2a differ strongly in their basicity, with $\mathbf{2 a}\left(\mathrm{H}_{\text {ant }}\right)$ even lying in the range of $\mathbf{2 b}$. In the diphosphanes 3 both phosphane positions also show a slight difference in this regard. It is known that the substituents of a phosphine strongly affect its basicity. Here, the replacement of phenyl substituents by isopropyl groups leads to an increase of the phosphine basicity by several orders of magnitude

	${ }^{1} J_{\text {PSe }}$	est. pK_{B}	
Monophos 2a $\mathrm{H}_{\text {syn }}$	701.2	7.3	
	2a $\mathrm{H}_{\text {syn }}$	740.2	12.4
	2b	738.5	12.2
Diphos	3a	697.1	6.7
		691.9	6.0
	3b	769.9	16.3
		764.7	14.3

The significant difference in basicity between the isomers of $\mathbf{2 a}$ is confirmed by methylation of the phosphorus. The inversion of the isomer ratio is based on the more rapid methylation of the $\mathrm{H}_{\text {sym }}$ isomer and rotation of the alkyne

2a $\mathrm{H}_{\text {anti }}$
Use as Chelating Ligand

In previous works we prepared polynuclear compounds by coordination of diphosphanes 3 to transition metals as $\mathrm{Pt}(\mathrm{II})^{[4]}$ while binding to first row transition metals could not be achieved so far due to a lack of basicity of commonly used 3b. However, the newly investigated, more basic diphosphine 3a is able to coordinate $\mathrm{Cu}(\mathrm{I})$ and $\mathrm{Ni}(\mathrm{II})$ giving complexes stable in solution. The $\mathrm{Ni}(\mathrm{II})$ complex can also be obtained with $\mathbf{3 b}$, though the lower donor strength is reflected in the strongly reduced stability.

Synthetic Approach

1) $n \mathrm{BuLi},-80^{\circ} \mathrm{C}$ 2) CIPR_{2}, rt
\downarrow

$2 \mathrm{R}=i \operatorname{Pr}(\mathbf{a}), \mathrm{Ph}(\mathbf{b})$
2) n BuLi, $-80^{\circ} \mathrm{C}$ 2) CIPR_{2}, rt

$3 \mathrm{R}=i \operatorname{Pr}(\mathbf{a}), \mathrm{Ph}(\mathbf{b})$

Electrophilic substitution after coordi nation of the unsubstituted acetylene allows functionalization whereas the side-on binding mode is maintained. While investigation of P-substituted acetylene compounds is usually acetylene compounds restricted to those of bis(diphenylrestricted to those of bis(diphenyl-
phosphino) acetylene (dppa), this phosphino)acetylene (dppa), this
synthesis enables variation of the synthesis enables variation of th substituents on the phosphorus.
Due to stabilizing π-interactions between one phenyl group and the scorpionate ligand, the first substitution step is regioselective with diphenyl phosphine while synthesis of 2a gives two regioisomers in a ratio of $39 \%\left(\mathrm{H}_{\text {sya }}\right)$ to 61 \% ($\mathrm{H}_{\text {ant }}$)

Hydrido-tris(trimethylpyrazolyl)borate

